

NATIONAL ENERGY TECHNOLOGY LABORATORY

Current and Future Technologies for Power Generation with Post-Combustion Carbon Capture

Robert Stevens National Energy Technology Laboratory

2012 NETL CO₂ Capture Technology Meeting July 11, 2012

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Objectives

- Support DOE's Carbon Capture and Advanced Combustion R&D Programs
- Develop technology pathways that feature postcombustion CCS-enabled PC plants that achieve ≤35% increase in COE relative to today's new supercritical PC plant without CCS.
- Utilize the pathway studies to inform technology development though identification of performance and cost targets.

Scope

- Technologies included:
 - Next generation post-combustion CO₂ capture
 - A-USC steam conditions (5000/1350/1400)
 - Advanced CO_2 compression
- Pathway begins with 1st generation supercritical PC plant with today's post-combustion capture technology
- Extend the pathway to include emerging technologies and estimate their performances at a mature stage of development (i.e., 15-20 years), thus simulating "nth-of-a-kind" plant performance (low risk financial structure)

PC Plant PFD

5

PC Plant and Evaluation Basis

Reference Plant Design Basis: NETL Bituminous Baseline report (PC Case 12)

- Bituminous coal (Illinois No. 6)
- Supercritical steam (3500 psig / 1100 F / 1100 F)
- Conventional flue gas cleaning using wet FGD with gypsum product
- Conventional caustic polishing scrubber to reduce SO₂ below 10 ppmv
- Flue gas ID fan boosts pressure 1.2 psi -- changes with advanced CO₂ separation technology
- 90% carbon capture using Conventional CO₂ separation system based on amine absorber technology -- replaced with advanced CO₂ separation technology
- Steam extracted for solvent stripper (1,931,497 lb/hr; 73.5 psia; 565 F) changes with advanced CO₂ separation technology
- Conventional water inter-cooled CO₂ compression incorporating a triethylene glycol dehydration system – may change with advanced CO₂ separation technology

PC Plant Performance and Cost Parameters

- PC plant performance and cost determined by CO₂ Capture Process power and cost parameters
- Power Parameters
 - CO₂ separation system auxiliary power
 - fuel recovery and compression system auxiliary power
 - CO₂ separation system net steam power loss
 - CO₂ separation system impact on the ID-fan power consumption
- Cost Parameters
 - capital cost of the CO_2 separation system
 - capital cost of the fuel recovery and compression system
 - variable operating cost of the CO₂ separation system
 - Delta cost of steam cycle
 - Delta cost of ID fan

Technical Approach

1. Process Simulation - ASPEN

- All major chemical processes and equipment were simulated
- Mass and energy balances
- Performance calculations including auxiliary power

2. <u>Selection of 2nd Generation Capture</u> <u>Technology</u>

- Two pathway studies initially selected:
 - Membrane (based on MTR technology)
 - Sorbent (based on TDA Research technology)
- Design basis information developed based largely on information available in literature

Design Basis

- Coal: IL #6
- Mid-Western site Baseline Study
- Environmental Requirements
 - NO_X: 0.07 lb/MMBtu
 - SO₂: 0.085 lb/MMBtu
 - Particulate: 0.013 lb/MMBtu
 - Mercury: 1.14lb/Tbtu
- 90% CO₂ Capture
- Cooling System: Evaporative Cooling Tower
- Plant capacity: 550 MW

Cost Estimation

- Consistent with Baseline Study
- June 2007 \$
- Project contingency
 - Commercial technologies: 10-15%
 - Next generation technology: 24% for capture technologies; 20% for CO₂ compression
- Process contingency
 - Zero for all plant components except A-USC boiler and turbines at 10% and 15%, respectively
- CO₂ transport, storage and monitoring costs are not included

Pathway Case Summary – Membrane based

Case	Capture Technology	Steam Conditions	CO ₂ Compression Technology	Financial Structure
1A	None	SC	None	Low risk
1B	None	AUSC	None	High risk
2	Fluor Econamine	SC	Conventional	High risk
3	Enhanced Fluor Econamine	SC	Conventional	High risk
4	MHI KS-1 Solvent	SC	Conventional	High risk
5A	MTR Membrane	SC	Conventional	High risk
5B	MTR Membrane	USC	Conventional	High risk
5C	MTR Membrane	AUSC	Conventional	High risk
5D	MTR Membrane	AUSC	Adv. Shockwave	High risk
5E	MTR Membrane	AUSC	Adv. Shockwave	Low risk

NATIONAL ENERGY TECHNOLOGY LABORATORY

Notes: • Fluor-based cases are consistent with NETL Bituminous Baseline Report (2010)

• MTR-based cases utilize enhanced performance and cost parameters

(11)

Cases 1A & 1B: PC w/o CCS

NATIONAL ENERGY TECHNOLOGY LABORATORY

Power Summary – Case 1A (SC)

CASE 1A POWER SUMMARY (kWe)					
TOTAL (STEAM TURBINE) POWER, kWe	580,400				
AUXILIARY LOAD SUMMARY, kWe					
Coal Handling and Conveying	440				
Pulverizers	2,780				
Sorbent Handling & Reagent Preparation	890				
Ash Handling	530				
Primary Air Fans	1,300				
Forced Draft Fans	1,660				
Induced Draft Fans	7,050				
SCR	50				
Baghouse	70				
Wet FGD	2,970				
Condensate Pumps	800				
Circulating Water Pumps	4,730				
Cooling Tower Fans	2,440				
Transformer Losses	1,820				
TOTAL AUXILIARIES, kWe	30,410				
NET POWER, kWe	549,990				
Net Plant Efficiency (HHV)	39.3%				

(13)

Power Summary – Case 1B (A-USC)

CASE 1B POWER SUMMARY (kWe)					
TOTAL (STEAM TURBINE) POWER, kWe	577,800				
AUXILIARY LOAD SUMMARY, kWe					
Coal Handling and Conveying	420				
Pulverizers	2,570				
Sorbent Handling & Reagent Preparation	820				
Ash Handling	490				
Primary Air Fans	1,200				
Forced Draft Fans	1,540				
Induced Draft Fans	6,500				
SCR	40				
Baghouse	60				
Wet FGD	2,750				
Condensate Pumps	620				
Circulating Water Pumps	4,080				
Cooling Tower Fans	2,110				
Transformer Losses	1,800				
TOTAL AUXILIARIES, kWe	27,820				
NET POWER, kWe	549,980				
Net Plant Efficiency (HHV)	42.5%				

BFD for PC with CO₂ Capture

15

Power Summary – Case 2

(representative of current capture technology)

CASE 2 POWER SUMMARY (kWe)				
TOTAL (STEAM TURBINE) POWER, kWe	662,800			
AUXILIARY LOAD SUMMARY, kWe				
Coal Handling and Conveying	510			
Pulverizers	3,850			
Sorbent Handling & Reagent Preparation	1,250			
Ash Handling	740			
Primary Air Fans	1,800			
Forced Draft Fans	2,300			
Induced Draft Fans	11,120			
SCR	70			
Baghouse	100			
Wet FGD	4,110			
Econamine FG Plus Auxiliaries	20,600			
CO ₂ Compression	44,890			
Condensate Pumps	560			
Circulating Water Pumps	10,100			
Ground Water Pumps	910			
Cooling Tower Fans	5,230			
Transformer Losses	2,290			
TOTAL AUXILIARIES, kWe	112,830			
NET POWER, kWe	549,970			
Net Plant Efficiency (HHV)	28.4%			

16

NATIONAL ENERGY TECHNOLOGY LABORATORY

MTR CO₂ Capture Membrane Process (Case 5)

Design Basis: Case 5 MTR Membrane Process Enhanced Performance Relative to Literature Key Parameter Assumptions

- Membrane Process
 - CO₂ and SO₂ Permeance: 3,500 gpu
 - N₂, O₂, Ar Permeance: 100 gpu
 - H₂O Permeance: 5,000 gpu
 - Pressure drop: 1.0 psi (flue gas and sweep sides)
 - Vacuum pump achieves 0.2 bar pressure
 - Membrane replacement time 5 years
 - Membrane surface area: 1,500,000 m²
 - Membrane installed cost \$80/m²
 - Membrane replacement cost \$15/m²
- CO₂ Shockwave Compressor (Cases 5D & 5E)
 - Increased polytropic efficiency: 93%

Cases 5A-5E: PC with MTR Membrane

NATIONAL ENERGY TECHNOLOGY LABORATORY

(19)

Membrane Pathway Plant Efficiency

20

First-Year Cost of Electricity – Membrane

(21)

Pathway Case Summary – Sorbent based

Case	Capture Technology	Steam Conditions	CO ₂ Compression Technology	Financial Structure
1A	None	SC	None	Low risk
1B	None	AUSC	None	High risk
2	Fluor Econamine	SC	Conventional	High risk
3	Enhanced Fluor Econamine	SC	Conventional	High risk
4	MHI KS-1 Solvent	SC	Conventional	High risk
6A	TDA Adsorbent	SC	Conventional	High risk
6B	TDA Adsorbent	USC	Conventional	High risk
6C	TDA Adsorbent	AUSC	Conventional	High risk
6D	TDA Adsorbent	AUSC	Adv. Shockwave	High risk
6E	TDA Adsorbent	AUSC	Adv. Shockwave	Low risk

NATIONAL ENERGY TECHNOLOGY LABORATORY

Notes: • Fluor-based cases are consistent with NETL Bituminous Baseline Report (2010)

• TDA-based cases utilize enhanced performance and cost parameters

22)

TDA Sorbent CO₂ Capture Process

23

Design Basis: Case 6 TDA Sorbent Process Enhanced Performance Relative to Literature Key Parameter Assumptions

TDA Sorbent Process

- Adsorbent: alkalized alumina; 3/8 inch diameter spheres
- Adsorbent cost: \$5/lb
- Sorbent CO₂ loading: 3.0%
- Adsorber and regenerator temperature: 140°C
- Adsorber and regenerator pressure drop: 0.4 psi
- Adsorbent entrains 1.0 wt% of inlet N₂, O₂ and water vapor to the regenerator
- Regenerator off-gas: 50 mole % CO₂
- Adsorber-regenerator type: Moving bed
- Adsorbent transport: Bucket conveyor-elevators
- CO₂ Shockwave Compressor
 - Increased polytropic efficiency: 93%

Pathway Plant Efficiency – Sorbent pathway

25)

First-Year Cost of Electricity – Sorbent

(26)

Conclusions

- The pathway study provides perspective on design and operating parameters, capital cost and operating cost that will be required to achieve the ≤ 35% increase in COE for advanced post-combustion carbon capture, CO₂ compression, and advanced steam cycles.
- This work illustrates the challenge in meeting the DOE COE target, suggesting that it will be difficult to achieve with only a single technology but rather through the combination of several technologies.
- Future work includes evaluating the effects of 2011\$ and simulating a 2nd generation carbon capture technology in a retrofit application.

Acknowledgements

Energy Sector Planning and Analysis (ESPA) contract:

- Dale Keairns *Booz Allen Hamilton, Inc.*
- Richard Newby *Booz Allen Hamilton, Inc.*
- Vasant Shah *Booz Allen Hamilton, Inc.*
- Marc Turner Booz Allen Hamilton, Inc.
- Mark Woods Booz Allen Hamilton, Inc.

Further Information

http://www.netl.doe.gov/energy-analyses

29